Find this model in the Llama3.2 model summary
id | layer_type | N | M | Q | alpha | D | alpha-hat | num_spikes | warning |
---|---|---|---|---|---|---|---|---|---|
1 | dense | 7680 | 4096 | 1.875000 | 3.269741 | 0.029633 | 2.192082 | 149 | |
2 | conv2d | 1280 | 3 | 426.666667 | 6.373472 | 0.054818 | -13.110176 | 47 | under-trained |
3 | dense | 1280 | 1280 | 1.000000 | 2.545296 | 0.042236 | 0.614319 | 46 | |
4 | dense | 1280 | 1280 | 1.000000 | 1.301391 | 0.041804 | 1.067313 | 727 | over-trained |
5 | dense | 1280 | 1280 | 1.000000 | 2.251098 | 0.088377 | -0.491387 | 142 | |
6 | dense | 1280 | 1280 | 1.000000 | 1.820194 | 0.082968 | 0.550975 | 70 | over-trained |
7 | dense | 5120 | 1280 | 4.000000 | 2.514296 | 0.034160 | 1.399823 | 99 | |
8 | dense | 5120 | 1280 | 4.000000 | 2.382229 | 0.019590 | 2.220256 | 65 | |
9 | dense | 1280 | 1280 | 1.000000 | 3.564515 | 0.080402 | -1.214209 | 81 | |
10 | dense | 1280 | 1280 | 1.000000 | 3.999577 | 0.088336 | -2.058816 | 63 | |
11 | dense | 1280 | 1280 | 1.000000 | 3.145919 | 0.078417 | -1.201440 | 134 | |
12 | dense | 1280 | 1280 | 1.000000 | 3.317776 | 0.093370 | -1.471603 | 119 | |
13 | dense | 5120 | 1280 | 4.000000 | 4.787225 | 0.068533 | -1.520852 | 99 | |
14 | dense | 5120 | 1280 | 4.000000 | 4.741083 | 0.055836 | -0.703231 | 71 | |
15 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
16 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
17 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
18 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
19 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
20 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
21 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
22 | dense | 1280 | 1280 | 1.000000 | 2.683980 | 0.086506 | -0.989466 | 61 | |
23 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
24 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
25 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
26 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
27 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
28 | dense | 5120 | 1280 | 4.000000 | 4.384247 | 0.043469 | -0.746194 | 87 | |
29 | dense | 1280 | 1280 | 1.000000 | 2.960914 | 0.084778 | -1.815842 | 117 | |
30 | dense | 5120 | 1280 | 4.000000 | 4.518219 | 0.085590 | -1.558221 | 137 | |
31 | dense | 1280 | 1280 | 1.000000 | 3.323159 | 0.097292 | -1.568238 | 151 | |
32 | dense | 1280 | 1280 | 1.000000 | 4.604640 | 0.069126 | -2.863413 | 42 | |
33 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
34 | dense | 5120 | 1280 | 4.000000 | 2.203295 | 0.040348 | 1.395921 | 146 | |
35 | dense | 5120 | 1280 | 4.000000 | 3.010237 | 0.024633 | 2.539573 | 47 | |
36 | dense | 1280 | 1280 | 1.000000 | 1.898266 | 0.069903 | -0.204753 | 83 | over-trained |
37 | dense | 1280 | 1280 | 1.000000 | 2.502632 | 0.094995 | -0.612197 | 105 | |
38 | dense | 1280 | 1280 | 1.000000 | 1.967720 | 0.070648 | -0.051130 | 71 | over-trained |
39 | dense | 1280 | 1280 | 1.000000 | 2.765974 | 0.094467 | -1.746220 | 164 | |
40 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
41 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
42 | dense | 5120 | 1280 | 4.000000 | 2.506064 | 0.024542 | 2.906495 | 85 | |
43 | dense | 1280 | 1280 | 1.000000 | 3.507024 | 0.044603 | 0.464330 | 45 | |
44 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
45 | dense | 1280 | 1280 | 1.000000 | 1.515720 | 0.079936 | -0.029655 | 493 | over-trained |
46 | dense | 1280 | 1280 | 1.000000 | 1.355424 | 0.039839 | 0.486188 | 631 | over-trained |
47 | dense | 1280 | 1280 | 1.000000 | 2.303219 | 0.086857 | 0.028780 | 87 | |
48 | dense | 1280 | 1280 | 1.000000 | 1.363337 | 0.039615 | 0.255536 | 614 | over-trained |
49 | dense | 1280 | 1280 | 1.000000 | 3.610152 | 0.033347 | -0.165683 | 38 | |
50 | dense | 1280 | 1280 | 1.000000 | 3.571400 | 0.026765 | 0.112314 | 46 | |
51 | dense | 5120 | 1280 | 4.000000 | 1.509925 | 0.074240 | 1.171670 | 796 | over-trained |
52 | dense | 5120 | 1280 | 4.000000 | 4.252967 | 0.087114 | -1.392011 | 147 | |
53 | dense | 5120 | 1280 | 4.000000 | 4.477445 | 0.057113 | -0.750778 | 83 | |
54 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
55 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
56 | dense | 1280 | 1280 | 1.000000 | 3.039837 | 0.096071 | -0.260953 | 105 | |
57 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
58 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
59 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
60 | dense | 14336 | 4096 | 3.500000 | 4.533036 | 0.024883 | 3.952838 | 461 | |
61 | dense | 5120 | 1280 | 4.000000 | 2.588279 | 0.018609 | 1.451485 | 85 | |
62 | dense | 14336 | 4096 | 3.500000 | 5.023506 | 0.025624 | 3.054506 | 404 | |
63 | dense | 1280 | 1280 | 1.000000 | 1.369852 | 0.048050 | 0.511362 | 635 | over-trained |
64 | dense | 1280 | 1280 | 1.000000 | 1.902370 | 0.096207 | 0.441883 | 269 | over-trained |
65 | dense | 14336 | 4096 | 3.500000 | 4.309320 | 0.021445 | 3.454991 | 471 | |
66 | dense | 1280 | 1280 | 1.000000 | 1.353120 | 0.049272 | 0.391589 | 683 | over-trained |
67 | dense | 1280 | 1280 | 1.000000 | 1.775889 | 0.088261 | 0.102892 | 284 | over-trained |
68 | dense | 5120 | 1280 | 4.000000 | 1.526912 | 0.089666 | 0.962187 | 805 | over-trained |
69 | dense | 4096 | 1024 | 4.000000 | 3.527939 | 0.035919 | -1.077962 | 78 | |
70 | dense | 4096 | 4096 | 1.000000 | 3.161390 | 0.023371 | 2.688327 | 161 | |
71 | dense | 4096 | 4096 | 1.000000 | 3.761875 | 0.037057 | 1.639904 | 256 | |
72 | dense | 4096 | 1024 | 4.000000 | 3.076280 | 0.047137 | 0.169507 | 87 | |
73 | dense | 1280 | 1280 | 1.000000 | 4.047555 | 0.087469 | -1.857005 | 63 | |
74 | dense | 1280 | 1280 | 1.000000 | 3.344276 | 0.112514 | -1.269240 | 117 | |
75 | dense | 1280 | 1280 | 1.000000 | 4.223088 | 0.076855 | -2.489108 | 65 | |
76 | dense | 1280 | 1280 | 1.000000 | 2.562781 | 0.106927 | -0.938458 | 201 | |
77 | dense | 5120 | 1280 | 4.000000 | 4.116610 | 0.086174 | -1.105724 | 134 | |
78 | dense | 5120 | 1280 | 4.000000 | 4.631869 | 0.060404 | -0.730767 | 80 | |
79 | dense | 5120 | 1280 | 4.000000 | 2.598704 | 0.023855 | 2.270639 | 79 | |
80 | dense | 1280 | 1280 | 1.000000 | 1.371318 | 0.042399 | 0.277767 | 623 | over-trained |
81 | dense | 1280 | 1280 | 1.000000 | 2.006125 | 0.094863 | -0.197655 | 207 | |
82 | dense | 1280 | 1280 | 1.000000 | 1.346884 | 0.050023 | 0.377921 | 680 | over-trained |
83 | dense | 1280 | 1280 | 1.000000 | 2.241964 | 0.087558 | -0.086024 | 120 | |
84 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
85 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
86 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
87 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
88 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
89 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
90 | dense | 5120 | 1280 | 4.000000 | 3.632750 | 0.101880 | -1.322808 | 203 | |
91 | dense | 1280 | 1280 | 1.000000 | 3.569281 | 0.102534 | -2.260596 | 127 | |
92 | dense | 1280 | 1280 | 1.000000 | 3.471660 | 0.089412 | -2.342602 | 84 | |
93 | dense | 1280 | 1280 | 1.000000 | 3.628514 | 0.089357 | -2.155762 | 111 | |
94 | dense | 1280 | 1280 | 1.000000 | 3.061597 | 0.084272 | -2.006372 | 110 | |
95 | dense | 5120 | 1280 | 4.000000 | 4.590547 | 0.066889 | -1.063461 | 87 | |
96 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
97 | dense | 5120 | 1280 | 4.000000 | 2.730731 | 0.030822 | 2.854359 | 54 | |
98 | dense | 5120 | 1280 | 4.000000 | 3.865252 | 0.072228 | -1.272442 | 107 | |
99 | dense | 1280 | 1280 | 1.000000 | 1.947235 | 0.081744 | -0.124997 | 162 | over-trained |
100 | dense | 1280 | 1280 | 1.000000 | 1.331940 | 0.054480 | 0.397369 | 804 | over-trained |
101 | dense | 1280 | 1280 | 1.000000 | 2.058718 | 0.083932 | -0.130931 | 156 | |
102 | dense | 1280 | 1280 | 1.000000 | 1.344795 | 0.053314 | 0.250804 | 807 | over-trained |
103 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
104 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
105 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
106 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
107 | dense | 4096 | 1024 | 4.000000 | 4.269250 | 0.032040 | 7.525654 | 72 | |
108 | dense | 4096 | 4096 | 1.000000 | 4.118466 | 0.029067 | 4.648287 | 185 | |
109 | dense | 4096 | 1024 | 4.000000 | 9.128731 | 0.055300 | 1.193925 | 41 | under-trained |
110 | dense | 5120 | 1280 | 4.000000 | 2.703200 | 0.028814 | 1.567903 | 65 | |
111 | dense | 5120 | 1280 | 4.000000 | 2.983713 | 0.027150 | 2.243249 | 45 | |
112 | dense | 1280 | 1280 | 1.000000 | 4.214234 | 0.098787 | -2.976377 | 66 | |
113 | dense | 1280 | 1280 | 1.000000 | 3.497375 | 0.110729 | -2.102501 | 130 | |
114 | dense | 1280 | 1280 | 1.000000 | 3.602481 | 0.103987 | -2.595266 | 113 | |
115 | dense | 5120 | 1280 | 4.000000 | 4.228764 | 0.066033 | -0.872582 | 102 | |
116 | dense | 1280 | 1280 | 1.000000 | 5.285520 | 0.080981 | -3.140947 | 38 | |
117 | dense | 5120 | 1280 | 4.000000 | 2.711864 | 0.024600 | 2.051626 | 63 | |
118 | dense | 5120 | 1280 | 4.000000 | 2.866897 | 0.025898 | 2.665446 | 44 | |
119 | dense | 1280 | 1280 | 1.000000 | 1.325538 | 0.078991 | 0.056986 | 857 | over-trained |
120 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
121 | dense | 1280 | 1280 | 1.000000 | 1.311575 | 0.087094 | 0.184135 | 892 | over-trained |
122 | dense | 1280 | 1280 | 1.000000 | 3.756380 | 0.090338 | -3.164891 | 81 | |
123 | dense | 1280 | 1280 | 1.000000 | 2.620966 | 0.074227 | -0.434926 | 86 | |
124 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
125 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
126 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
127 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
128 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
129 | dense | 1280 | 1280 | 1.000000 | 3.279379 | 0.099593 | -1.940817 | 143 | |
130 | dense | 1280 | 1280 | 1.000000 | 3.327361 | 0.109331 | -2.712772 | 140 | |
131 | dense | 1280 | 1280 | 1.000000 | 3.485884 | 0.098861 | -2.192620 | 115 | |
132 | dense | 5120 | 1280 | 4.000000 | 8.429718 | 0.068168 | -21.430038 | 120 | under-trained |
133 | dense | 5120 | 1280 | 4.000000 | 10.166839 | 0.037439 | -29.813255 | 48 | under-trained |
134 | dense | 1280 | 1280 | 1.000000 | 2.765675 | 0.076908 | -0.571797 | 72 | |
135 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
136 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
137 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
138 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
139 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
140 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
141 | dense | 1280 | 1280 | 1.000000 | 2.924666 | 0.081340 | -0.454013 | 47 | |
142 | dense | 1280 | 1280 | 1.000000 | 1.308119 | 0.107003 | 0.213705 | 909 | over-trained |
143 | dense | 1280 | 1280 | 1.000000 | 2.731298 | 0.080637 | -0.300094 | 74 | |
144 | dense | 1280 | 1280 | 1.000000 | 1.318437 | 0.098604 | 0.132931 | 898 | over-trained |
145 | dense | 5120 | 1280 | 4.000000 | 2.996444 | 0.029673 | 2.084701 | 50 | |
146 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
147 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
148 | dense | 5120 | 1280 | 4.000000 | 2.677985 | 0.022527 | 1.246120 | 93 | |
149 | dense | 1280 | 1280 | 1.000000 | 2.539171 | 0.073415 | -1.058031 | 118 | |
150 | dense | 1280 | 1280 | 1.000000 | 3.918430 | 0.072616 | -2.147267 | 51 | |
168 | dense | 1280 | 1280 | 1.000000 | 3.418807 | 0.072692 | -0.607177 | 40 | |
151 | dense | 1280 | 1280 | 1.000000 | 2.440062 | 0.074192 | -1.045017 | 125 | |
152 | dense | 1280 | 1280 | 1.000000 | 2.958806 | 0.104397 | -1.663900 | 158 | |
153 | dense | 5120 | 1280 | 4.000000 | 2.789005 | 0.018923 | -1.404426 | 80 | |
154 | dense | 5120 | 1280 | 4.000000 | 2.831017 | 0.044771 | -1.695887 | 86 | |
155 | dense | 1280 | 1280 | 1.000000 | 2.179102 | 0.099186 | -0.490115 | 227 | |
156 | dense | 1280 | 1280 | 1.000000 | 3.019859 | 0.078229 | -0.074942 | 48 | |
157 | dense | 1280 | 1280 | 1.000000 | 3.346564 | 0.058325 | 0.226331 | 37 | |
158 | dense | 1280 | 1280 | 1.000000 | 2.600830 | 0.083399 | -0.576950 | 104 | |
159 | dense | 5120 | 1280 | 4.000000 | 2.744533 | 0.041223 | 1.002390 | 98 | |
160 | dense | 4096 | 1024 | 4.000000 | 3.600158 | 0.028030 | -0.108280 | 48 | |
161 | dense | 4096 | 4096 | 1.000000 | 3.802912 | 0.019851 | 0.991354 | 135 | |
162 | dense | 5120 | 1280 | 4.000000 | 3.222846 | 0.036876 | 1.745825 | 48 | |
163 | dense | 4096 | 1024 | 4.000000 | 3.253854 | 0.080830 | -1.463779 | 132 | |
164 | dense | 14336 | 4096 | 3.500000 | 4.983879 | 0.013205 | 2.460208 | 280 | |
165 | dense | 14336 | 4096 | 3.500000 | 3.846131 | 0.020279 | 3.005484 | 502 | |
166 | dense | 14336 | 4096 | 3.500000 | 3.851878 | 0.018715 | 3.135702 | 463 | |
167 | dense | 4096 | 4096 | 1.000000 | 3.516102 | 0.021508 | 1.498579 | 110 | |
169 | dense | 1280 | 1280 | 1.000000 | 2.160366 | 0.107827 | 0.279278 | 158 | |
170 | dense | 5120 | 1280 | 4.000000 | 2.873425 | 0.036351 | 1.157628 | 76 | |
171 | dense | 5120 | 1280 | 4.000000 | 3.060561 | 0.057032 | 1.439095 | 86 | |
172 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
173 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
174 | dense | 1280 | 1280 | 1.000000 | 2.262404 | 0.103881 | 0.308392 | 159 | |
175 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
176 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
177 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
178 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
179 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
180 | dense | 1280 | 1280 | 1.000000 | 2.345115 | 0.101598 | -0.433689 | 158 | |
181 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
182 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
183 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
184 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
185 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
186 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
187 | dense | 1280 | 1280 | 1.000000 | 3.164165 | 0.077236 | -0.602415 | 45 | |
188 | dense | 1280 | 1280 | 1.000000 | 2.350270 | 0.107909 | 0.082011 | 134 | |
189 | dense | 1280 | 1280 | 1.000000 | 2.355132 | 0.100871 | 0.274015 | 126 | |
190 | dense | 5120 | 1280 | 4.000000 | 2.522772 | 0.044407 | 1.111139 | 156 | |
191 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
192 | dense | 5120 | 1280 | 4.000000 | 3.279978 | 0.056837 | 1.796600 | 56 | |
193 | dense | 1280 | 1280 | 1.000000 | 2.094191 | 0.094957 | -0.357866 | 232 | |
194 | dense | 1280 | 1280 | 1.000000 | 2.399964 | 0.104616 | 0.162368 | 135 | |
195 | dense | 1280 | 1280 | 1.000000 | 2.531787 | 0.080960 | -0.376639 | 131 | |
196 | dense | 1280 | 1280 | 1.000000 | 2.226137 | 0.096473 | 0.149135 | 160 | |
197 | dense | 1280 | 1280 | 1.000000 | 2.284200 | 0.100837 | -0.517178 | 193 | |
198 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
199 | dense | 5120 | 1280 | 4.000000 | 2.870681 | 0.031758 | 1.636479 | 59 | |
200 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
201 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
202 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
203 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
204 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
205 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
206 | dense | 5120 | 1280 | 4.000000 | 3.804944 | 0.052512 | 1.658355 | 35 | |
207 | dense | 5120 | 1280 | 4.000000 | 2.736318 | 0.028633 | 1.494242 | 127 | |
208 | dense | 5120 | 1280 | 4.000000 | 3.559777 | 0.042337 | 1.384194 | 64 | |
209 | dense | 1280 | 1280 | 1.000000 | 2.910117 | 0.066700 | -0.109051 | 65 | |
210 | dense | 1280 | 1280 | 1.000000 | 3.133728 | 0.050283 | -0.399121 | 51 | |
211 | dense | 1280 | 1280 | 1.000000 | 3.744886 | 0.049456 | 0.091686 | 32 | |
212 | dense | 1280 | 1280 | 1.000000 | 2.218557 | 0.093646 | -0.460353 | 237 | |
213 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
214 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
215 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
216 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
217 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
218 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
219 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
220 | dense | 1280 | 1280 | 1.000000 | 3.575348 | 0.054606 | -0.146724 | 36 | |
221 | dense | 4096 | 1024 | 4.000000 | 3.410483 | 0.072517 | -0.696991 | 98 | |
222 | dense | 4096 | 4096 | 1.000000 | 3.606867 | 0.024934 | 1.238141 | 122 | |
223 | dense | 1280 | 1280 | 1.000000 | 2.790510 | 0.063972 | -0.562550 | 89 | |
224 | dense | 1280 | 1280 | 1.000000 | 3.098824 | 0.066082 | -0.180707 | 51 | |
225 | dense | 1280 | 1280 | 1.000000 | 3.575944 | 0.063430 | -0.910747 | 40 | |
226 | dense | 4096 | 4096 | 1.000000 | 3.635339 | 0.030835 | 1.820214 | 100 | |
227 | dense | 4096 | 1024 | 4.000000 | 3.000966 | 0.098200 | -1.311903 | 178 | |
228 | dense | 14336 | 4096 | 3.500000 | 4.450863 | 0.018380 | 2.312085 | 275 | |
229 | dense | 14336 | 4096 | 3.500000 | 3.601910 | 0.013130 | 3.017093 | 525 | |
230 | dense | 14336 | 4096 | 3.500000 | 3.612485 | 0.011581 | 3.154709 | 470 | |
231 | dense | 5120 | 1280 | 4.000000 | 3.398120 | 0.048711 | 0.825312 | 108 | |
232 | dense | 5120 | 1280 | 4.000000 | 2.608505 | 0.037090 | 1.160405 | 204 | |
233 | dense | 5120 | 1280 | 4.000000 | 3.771845 | 0.043421 | 0.947576 | 67 | |
234 | dense | 5120 | 1280 | 4.000000 | 2.696243 | 0.042584 | 0.980049 | 161 | |
235 | dense | 1280 | 1280 | 1.000000 | 2.113649 | 0.109288 | -0.276654 | 269 | |
236 | dense | 1280 | 1280 | 1.000000 | 3.381066 | 0.071549 | -0.924712 | 43 | |
237 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
238 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
239 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
240 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
241 | dense | 1280 | 1280 | 1.000000 | 3.305572 | 0.068704 | -0.431957 | 59 | |
242 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
243 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
244 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
245 | dense | 1280 | 1280 | 1.000000 | 3.447251 | 0.082028 | -0.846485 | 60 | |
246 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
247 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
248 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
249 | dense | 1280 | 1280 | 1.000000 | 3.099099 | 0.074782 | -0.392297 | 63 | |
250 | dense | 5120 | 1280 | 4.000000 | 2.620792 | 0.037038 | 0.827318 | 218 | |
251 | dense | 1280 | 1280 | 1.000000 | 3.239703 | 0.087016 | -0.865822 | 71 | |
252 | dense | 1280 | 1280 | 1.000000 | 2.430742 | 0.071477 | -0.790083 | 164 | |
253 | dense | 1280 | 1280 | 1.000000 | 2.270894 | 0.088749 | -0.962476 | 221 | |
254 | dense | 5120 | 1280 | 4.000000 | 3.522596 | 0.061151 | 0.665362 | 110 | |
255 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
256 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
257 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
258 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
259 | dense | 1280 | 1280 | 1.000000 | 2.627136 | 0.085201 | -1.225293 | 146 | |
260 | dense | 1280 | 1280 | 1.000000 | 3.244377 | 0.078202 | -0.713002 | 62 | |
261 | dense | 1280 | 1280 | 1.000000 | 2.506755 | 0.065874 | -0.922394 | 155 | |
262 | dense | 1280 | 1280 | 1.000000 | 3.297909 | 0.089964 | -1.222818 | 81 | |
263 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
264 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
265 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
266 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
267 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
268 | dense | 5120 | 1280 | 4.000000 | 2.674700 | 0.035440 | 0.742588 | 208 | |
269 | dense | 5120 | 1280 | 4.000000 | 4.141859 | 0.049342 | 0.709718 | 58 | |
270 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
271 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
272 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
273 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
274 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
275 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
276 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
277 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
278 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
279 | dense | 1280 | 1280 | 1.000000 | 2.706504 | 0.073710 | -0.777533 | 141 | |
280 | dense | 1280 | 1280 | 1.000000 | 2.590572 | 0.078960 | -1.208418 | 166 | |
281 | dense | 1280 | 1280 | 1.000000 | 2.803548 | 0.075862 | -0.880423 | 105 | |
282 | dense | 1280 | 1280 | 1.000000 | 2.812028 | 0.092961 | -1.006679 | 129 | |
283 | dense | 5120 | 1280 | 4.000000 | 2.900880 | 0.022233 | 0.687955 | 177 | |
284 | dense | 5120 | 1280 | 4.000000 | 4.594664 | 0.034493 | 0.484132 | 41 | |
285 | dense | 5120 | 1280 | 4.000000 | 3.071584 | 0.023865 | 0.497299 | 156 | |
286 | dense | 14336 | 4096 | 3.500000 | 3.870671 | 0.016767 | 3.374391 | 439 | |
287 | dense | 14336 | 4096 | 3.500000 | 3.820221 | 0.019257 | 3.361971 | 496 | |
288 | dense | 14336 | 4096 | 3.500000 | 4.852914 | 0.019519 | 2.266774 | 119 | |
289 | dense | 4096 | 1024 | 4.000000 | 4.109997 | 0.080268 | -2.105454 | 70 | |
290 | dense | 4096 | 1024 | 4.000000 | 4.617590 | 0.052408 | -0.527161 | 32 | |
291 | dense | 4096 | 4096 | 1.000000 | 4.082045 | 0.030112 | 0.921330 | 92 | |
292 | dense | 1280 | 1280 | 1.000000 | 2.437368 | 0.084907 | -1.286647 | 247 | |
293 | dense | 1280 | 1280 | 1.000000 | 2.976314 | 0.100342 | -1.207750 | 122 | |
294 | dense | 5120 | 1280 | 4.000000 | 4.241737 | 0.042590 | 0.274497 | 87 | |
295 | dense | 4096 | 4096 | 1.000000 | 3.793519 | 0.025732 | 1.534017 | 92 | |
296 | dense | 1280 | 1280 | 1.000000 | 2.501083 | 0.087444 | -0.786077 | 187 | |
297 | dense | 1280 | 1280 | 1.000000 | 2.814136 | 0.053046 | -1.109640 | 105 | |
298 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
299 | dense | 1280 | 1280 | 1.000000 | 3.393136 | 0.092268 | -2.229850 | 120 | |
300 | dense | 1280 | 1280 | 1.000000 | 3.759365 | 0.076216 | -1.310775 | 47 | |
301 | dense | 1280 | 1280 | 1.000000 | 3.735319 | 0.047592 | -2.016140 | 38 | |
302 | dense | 1280 | 1280 | 1.000000 | 3.657435 | 0.096874 | -1.370420 | 96 | |
303 | dense | 5120 | 1280 | 4.000000 | 3.409857 | 0.024127 | 0.156453 | 144 | |
304 | dense | 5120 | 1280 | 4.000000 | 5.501067 | 0.026648 | 0.117056 | 35 | |
305 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
306 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
307 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
308 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
309 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
310 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
311 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
312 | dense | 1280 | 1280 | 1.000000 | 3.457324 | 0.076955 | -2.914902 | 125 | |
313 | dense | 1280 | 1280 | 1.000000 | 4.048189 | 0.080714 | -1.947529 | 64 | |
314 | dense | 1280 | 1280 | 1.000000 | 3.850265 | 0.031986 | -2.239258 | 53 | |
315 | dense | 1280 | 1280 | 1.000000 | 3.858318 | 0.094076 | -1.804864 | 97 | |
316 | dense | 5120 | 1280 | 4.000000 | 4.078835 | 0.026309 | -0.716685 | 111 | |
317 | dense | 5120 | 1280 | 4.000000 | 3.827703 | 0.093222 | -0.168119 | 276 | |
318 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
319 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
320 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
321 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
322 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
323 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
324 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
325 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
326 | dense | 1280 | 1280 | 1.000000 | 5.187144 | 0.042889 | -4.013197 | 24 | |
327 | dense | 5120 | 1280 | 4.000000 | 4.659958 | 0.086761 | -0.418973 | 185 | |
328 | dense | 5120 | 1280 | 4.000000 | 4.393379 | 0.024181 | -0.286428 | 89 | |
329 | dense | 1280 | 1280 | 1.000000 | 6.330879 | 0.070965 | -4.576156 | 34 | under-trained |
330 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
331 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
332 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
333 | dense | 1280 | 1280 | 1.000000 | 3.788662 | 0.106785 | -2.380606 | 125 | |
334 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
335 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
336 | dense | 1280 | 1280 | 1.000000 | 3.564363 | 0.102504 | -3.129012 | 161 | |
337 | dense | 5120 | 1280 | 4.000000 | 5.325518 | 0.038049 | -1.843840 | 85 | |
338 | dense | 1280 | 1280 | 1.000000 | 3.536468 | 0.109063 | -2.747699 | 165 | |
339 | dense | 1280 | 1280 | 1.000000 | 5.293495 | 0.092775 | -4.953698 | 89 | |
340 | dense | 1280 | 1280 | 1.000000 | 4.264951 | 0.090194 | -2.626811 | 96 | |
341 | dense | 1280 | 1280 | 1.000000 | 4.625629 | 0.088832 | -4.611152 | 95 | |
342 | dense | 5120 | 1280 | 4.000000 | 5.429947 | 0.077660 | -0.535323 | 126 | |
343 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
344 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
345 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
346 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
347 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
348 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
349 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
350 | dense | 14336 | 4096 | 3.500000 | 3.956955 | 0.022708 | 3.428804 | 552 | |
351 | dense | 14336 | 4096 | 3.500000 | 5.509114 | 0.019064 | 1.770212 | 204 | |
352 | dense | 5120 | 1280 | 4.000000 | 6.223667 | 0.028975 | -0.807295 | 51 | under-trained |
353 | dense | 4096 | 1024 | 4.000000 | 4.152709 | 0.056349 | -1.807741 | 53 | |
354 | dense | 4096 | 4096 | 1.000000 | 4.467561 | 0.035921 | 1.434683 | 53 | |
355 | dense | 4096 | 1024 | 4.000000 | 3.951859 | 0.095176 | -0.860719 | 118 | |
356 | dense | 1280 | 1280 | 1.000000 | 5.033869 | 0.108024 | -5.565862 | 103 | |
357 | dense | 1280 | 1280 | 1.000000 | 3.336568 | 0.108040 | -2.342168 | 198 | |
358 | dense | 1280 | 1280 | 1.000000 | 6.474283 | 0.083408 | -6.462705 | 60 | under-trained |
359 | dense | 1280 | 1280 | 1.000000 | 6.258775 | 0.104033 | -5.169308 | 54 | under-trained |
360 | dense | 5120 | 1280 | 4.000000 | 6.607372 | 0.024212 | -2.693083 | 59 | under-trained |
361 | dense | 14336 | 4096 | 3.500000 | 4.031898 | 0.021584 | 3.321480 | 501 | |
362 | dense | 4096 | 4096 | 1.000000 | 4.347681 | 0.034165 | 0.492808 | 143 | |
363 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
364 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
365 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
366 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
367 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
368 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
369 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
370 | dense | 5120 | 1280 | 4.000000 | 6.518772 | 0.026370 | -0.947177 | 56 | under-trained |
371 | dense | 5120 | 1280 | 4.000000 | 6.500700 | 0.042404 | -2.525308 | 75 | under-trained |
388 | dense | 1280 | 1280 | 1.000000 | 5.488281 | 0.113109 | -4.582234 | 86 | |
372 | dense | 1280 | 1280 | 1.000000 | 6.086571 | 0.096546 | -5.151972 | 63 | under-trained |
373 | dense | 1280 | 1280 | 1.000000 | 6.151549 | 0.073361 | -6.158482 | 56 | under-trained |
374 | dense | 1280 | 1280 | 1.000000 | 4.267159 | 0.103642 | -3.367460 | 121 | |
375 | dense | 1280 | 1280 | 1.000000 | 4.160860 | 0.103671 | -4.022365 | 154 | |
376 | dense | 1280 | 1280 | 1.000000 | 5.564704 | 0.093094 | -5.323471 | 81 | |
377 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
378 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
379 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
380 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
381 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
382 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
383 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
384 | dense | 5120 | 1280 | 4.000000 | 6.725711 | 0.023787 | -1.001738 | 56 | under-trained |
385 | dense | 1280 | 1280 | 1.000000 | 5.010259 | 0.101716 | -4.360351 | 96 | |
386 | dense | 5120 | 1280 | 4.000000 | 6.832658 | 0.039048 | -2.534962 | 72 | under-trained |
387 | dense | 1280 | 1280 | 1.000000 | 5.121152 | 0.107982 | -5.030238 | 124 | |
389 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
390 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
391 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
392 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
393 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
394 | dense | 1280 | 1280 | 1.000000 | 4.438746 | 0.108611 | -3.918500 | 145 | |
395 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
396 | dense | 5120 | 1280 | 4.000000 | 8.759337 | 0.044491 | -3.634156 | 38 | under-trained |
397 | dense | 5120 | 1280 | 4.000000 | 6.461991 | 0.019634 | -1.272618 | 58 | under-trained |
398 | dense | 1280 | 1280 | 1.000000 | 4.223560 | 0.124915 | -3.844829 | 163 | |
399 | dense | 1280 | 1280 | 1.000000 | 4.833902 | 0.117344 | -5.434553 | 151 | |
400 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
401 | dense | 1280 | 1280 | 1.000000 | 6.162564 | 0.115156 | -6.734861 | 87 | under-trained |
402 | dense | 5120 | 1280 | 4.000000 | 6.982353 | 0.073333 | -2.429743 | 80 | under-trained |
403 | dense | 1280 | 1280 | 1.000000 | 4.564171 | 0.118687 | -3.995092 | 146 | |
404 | dense | 1280 | 1280 | 1.000000 | 9.010190 | 0.098639 | -8.265076 | 48 | under-trained |
405 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
406 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
407 | dense | 5120 | 1280 | 4.000000 | 6.739475 | 0.026383 | -1.110013 | 58 | under-trained |
408 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
409 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
410 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
411 | dense | 1280 | 1280 | 1.000000 | 4.855391 | 0.102824 | -4.699072 | 126 | |
412 | dense | 1280 | 1280 | 1.000000 | 6.753066 | 0.102424 | -5.629766 | 55 | under-trained |
413 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
414 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
415 | dense | 14336 | 4096 | 3.500000 | 5.886400 | 0.012029 | 1.630381 | 245 | |
416 | dense | 4096 | 1024 | 4.000000 | 4.012272 | 0.100694 | -0.304969 | 127 | |
417 | dense | 5120 | 1280 | 4.000000 | 6.586138 | 0.024017 | -0.905180 | 77 | under-trained |
418 | dense | 5120 | 1280 | 4.000000 | 7.078127 | 0.051472 | -2.648028 | 55 | under-trained |
419 | dense | 1280 | 1280 | 1.000000 | 10.282260 | 0.111019 | -9.498285 | 36 | under-trained |
420 | dense | 1280 | 1280 | 1.000000 | 5.867913 | 0.105522 | -6.079770 | 93 | |
421 | dense | 1280 | 1280 | 1.000000 | 7.988559 | 0.068050 | -6.459820 | 24 | under-trained |
422 | dense | 1280 | 1280 | 1.000000 | 6.186938 | 0.105510 | -6.510273 | 83 | under-trained |
423 | dense | 4096 | 1024 | 4.000000 | 4.186655 | 0.065082 | -2.174973 | 91 | |
424 | dense | 4096 | 4096 | 1.000000 | 5.497216 | 0.024631 | 0.196839 | 67 | |
425 | dense | 4096 | 4096 | 1.000000 | 4.555348 | 0.036800 | 0.945844 | 85 | |
426 | dense | 14336 | 4096 | 3.500000 | 4.279594 | 0.023435 | 3.325581 | 476 | |
427 | dense | 14336 | 4096 | 3.500000 | 4.128357 | 0.025372 | 3.331924 | 553 | |
428 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
429 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
430 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
431 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
432 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
433 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
434 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
435 | dense | 1280 | 1280 | 1.000000 | 6.333885 | 0.067541 | -6.221918 | 47 | under-trained |
436 | dense | 5120 | 1280 | 4.000000 | 5.794458 | 0.023807 | -1.306534 | 64 | |
437 | dense | 5120 | 1280 | 4.000000 | 6.113619 | 0.090851 | -2.831043 | 99 | under-trained |
438 | dense | 1280 | 1280 | 1.000000 | 3.850506 | 0.116778 | -3.330702 | 199 | |
439 | dense | 1280 | 1280 | 1.000000 | 5.734131 | 0.098012 | -5.816130 | 74 | |
440 | dense | 1280 | 1280 | 1.000000 | 6.529695 | 0.062780 | -5.485666 | 42 | under-trained |
441 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
442 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
443 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
444 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
445 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
446 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
447 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
448 | dense | 5120 | 1280 | 4.000000 | 6.148902 | 0.060266 | -2.664588 | 61 | under-trained |
449 | dense | 1280 | 1280 | 1.000000 | 7.088347 | 0.084163 | -6.390640 | 48 | under-trained |
450 | dense | 1280 | 1280 | 1.000000 | 5.045361 | 0.077187 | -5.110003 | 68 | |
451 | dense | 1280 | 1280 | 1.000000 | 6.481410 | 0.060282 | -5.389965 | 47 | under-trained |
452 | dense | 1280 | 1280 | 1.000000 | 4.470601 | 0.091694 | -4.075556 | 116 | |
453 | dense | 5120 | 1280 | 4.000000 | 5.356904 | 0.039829 | -1.019940 | 57 | |
454 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
455 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
456 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
457 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
458 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
459 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
460 | dense | 1280 | 1280 | 1.000000 | 3.835969 | 0.076635 | -2.812917 | 70 | |
461 | dense | 5120 | 1280 | 4.000000 | 4.722966 | 0.039214 | -0.680659 | 70 | |
462 | dense | 5120 | 1280 | 4.000000 | 5.863616 | 0.042328 | -0.301394 | 27 | |
463 | dense | 1280 | 1280 | 1.000000 | 5.332712 | 0.095241 | -4.723821 | 61 | |
464 | dense | 1280 | 1280 | 1.000000 | 4.239001 | 0.085577 | -3.363790 | 69 | |
465 | dense | 1280 | 1280 | 1.000000 | 3.854692 | 0.095421 | -3.127990 | 127 | |
466 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
467 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
468 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
469 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
470 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
471 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
472 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
473 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
474 | dense | 14336 | 4096 | 3.500000 | 4.376915 | 0.026669 | 3.495650 | 502 | |
475 | dense | 14336 | 4096 | 3.500000 | 5.498228 | 0.018900 | 1.686249 | 252 | |
476 | dense | 14336 | 4096 | 3.500000 | 4.296738 | 0.025027 | 3.370534 | 525 | |
477 | dense | 4096 | 4096 | 1.000000 | 3.954776 | 0.024093 | 1.170794 | 112 | |
478 | dense | 4096 | 1024 | 4.000000 | 4.578344 | 0.057587 | -2.324132 | 61 | |
479 | dense | 4096 | 4096 | 1.000000 | 4.709775 | 0.033423 | 0.534411 | 176 | |
480 | dense | 4096 | 1024 | 4.000000 | 4.590770 | 0.038493 | -1.407574 | 57 | |
481 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
482 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
483 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
484 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
485 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
486 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
487 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
488 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
489 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
490 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
491 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
492 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
493 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
494 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
495 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
496 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
497 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
498 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
499 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
500 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
501 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
502 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
503 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
504 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
505 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
506 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
507 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
508 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
509 | dense | 14336 | 4096 | 3.500000 | 4.484938 | 0.028214 | 3.845490 | 460 | |
510 | dense | 14336 | 4096 | 3.500000 | 5.014029 | 0.016112 | 2.303088 | 99 | |
511 | dense | 14336 | 4096 | 3.500000 | 4.417889 | 0.028403 | 4.006231 | 500 | |
512 | dense | 4096 | 4096 | 1.000000 | 4.287422 | 0.015762 | 1.666590 | 96 | |
513 | dense | 4096 | 1024 | 4.000000 | 3.271217 | 0.088100 | -0.794779 | 177 | |
514 | dense | 4096 | 1024 | 4.000000 | 3.852626 | 0.052162 | -1.589537 | 89 | |
515 | dense | 4096 | 4096 | 1.000000 | 3.824852 | 0.020800 | 1.901491 | 87 | |
516 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
517 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
518 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
519 | dense | 4096 | 4096 | 1.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
520 | dense | 4096 | 1024 | 4.000000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
521 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |
522 | dense | 14336 | 4096 | 3.500000 | -1.000000 | -1.000000 | inf | -1 | over-trained |