Find this model in the OpenAI model summary
id | layer_type | N | M | Q | alpha | D | alpha-hat | num_spikes | warning |
---|---|---|---|---|---|---|---|---|---|
1 | dense | 4096 | 2880 | 1.422222 | 1.718427 | 0.024604 | 4.181229 | 973 | over-trained |
2 | dense | 4096 | 2880 | 1.422222 | 6.196643 | 0.031932 | 14.330573 | 52 | under-trained |
3 | dense | 2880 | 512 | 5.625000 | 4.412375 | 0.058119 | 12.212202 | 79 | |
4 | dense | 2880 | 512 | 5.625000 | 5.541478 | 0.115215 | 10.169374 | 91 | |
5 | dense | 2880 | 32 | 90.000000 | 5.015612 | 0.059348 | 3.365087 | 14 | |
6 | dense | 4096 | 2880 | 1.422222 | 1.669828 | 0.028665 | 4.685576 | 952 | over-trained |
7 | dense | 4096 | 2880 | 1.422222 | 2.379678 | 0.072915 | 4.772476 | 332 | |
8 | dense | 2880 | 512 | 5.625000 | 2.786362 | 0.051539 | 7.348435 | 49 | |
9 | dense | 2880 | 512 | 5.625000 | 4.276191 | 0.089084 | 6.498848 | 100 | |
10 | dense | 2880 | 32 | 90.000000 | 3.465990 | 0.204296 | 0.880363 | 25 | |
11 | dense | 2880 | 512 | 5.625000 | 3.329586 | 0.029108 | 6.152574 | 45 | |
12 | dense | 2880 | 512 | 5.625000 | 5.201481 | 0.073703 | 7.189666 | 97 | |
13 | dense | 4096 | 2880 | 1.422222 | 2.500108 | 0.026636 | 7.329238 | 57 | |
14 | dense | 4096 | 2880 | 1.422222 | 3.433156 | 0.053501 | 6.087460 | 119 | |
15 | dense | 2880 | 32 | 90.000000 | 4.110494 | 0.083040 | 0.006562 | 15 | |
16 | dense | 4096 | 2880 | 1.422222 | 1.819048 | 0.046514 | 6.301559 | 764 | over-trained |
17 | dense | 2880 | 32 | 90.000000 | 3.791077 | 0.067424 | -0.204026 | 17 | |
18 | dense | 2880 | 512 | 5.625000 | 3.154601 | 0.029421 | 6.877915 | 30 | |
19 | dense | 4096 | 2880 | 1.422222 | 2.582296 | 0.065423 | 4.386934 | 220 | |
20 | dense | 2880 | 512 | 5.625000 | 2.649240 | 0.060978 | 4.019025 | 296 | |
21 | dense | 4096 | 2880 | 1.422222 | 4.165370 | 0.060957 | 6.349822 | 46 | |
22 | dense | 4096 | 2880 | 1.422222 | 2.592488 | 0.030081 | 8.187045 | 88 | |
23 | dense | 2880 | 32 | 90.000000 | 3.201298 | 0.109603 | -0.416654 | 20 | |
24 | dense | 2880 | 512 | 5.625000 | 3.156275 | 0.032013 | 5.954505 | 94 | |
25 | dense | 2880 | 512 | 5.625000 | 3.485290 | 0.099093 | 4.352279 | 217 | |
26 | dense | 4096 | 2880 | 1.422222 | 2.385742 | 0.069405 | 4.258859 | 382 | |
27 | dense | 2880 | 512 | 5.625000 | 11.019264 | 0.125345 | 12.375806 | 65 | under-trained |
28 | dense | 2880 | 32 | 90.000000 | 4.285006 | 0.088173 | -0.488100 | 12 | |
29 | dense | 4096 | 2880 | 1.422222 | 2.385183 | 0.033147 | 7.966671 | 129 | |
30 | dense | 2880 | 512 | 5.625000 | 3.672881 | 0.043859 | 6.477891 | 31 | |
31 | dense | 2880 | 512 | 5.625000 | 3.173822 | 0.066012 | 5.057228 | 101 | |
32 | dense | 2880 | 512 | 5.625000 | 7.346474 | 0.065136 | 8.565700 | 58 | under-trained |
33 | dense | 4096 | 2880 | 1.422222 | 2.290385 | 0.027752 | 7.160808 | 201 | |
34 | dense | 4096 | 2880 | 1.422222 | 4.862812 | 0.035920 | 7.120076 | 50 | |
35 | dense | 2880 | 32 | 90.000000 | 4.047131 | 0.086458 | -0.279790 | 16 | |
36 | dense | 2880 | 512 | 5.625000 | 2.795328 | 0.054527 | 5.355405 | 64 | |
37 | dense | 4096 | 2880 | 1.422222 | 3.122128 | 0.044317 | 5.055505 | 103 | |
38 | dense | 4096 | 2880 | 1.422222 | 2.206234 | 0.019447 | 7.292149 | 262 | |
39 | dense | 2880 | 512 | 5.625000 | 4.210781 | 0.083567 | 5.244943 | 92 | |
40 | dense | 2880 | 32 | 90.000000 | 2.140573 | 0.216209 | -0.244492 | 31 | |
41 | dense | 4096 | 2880 | 1.422222 | 2.569051 | 0.024133 | 8.755199 | 275 | |
42 | dense | 2880 | 512 | 5.625000 | 3.549257 | 0.031920 | 4.681356 | 42 | |
43 | dense | 2880 | 32 | 90.000000 | 2.643919 | 0.069551 | -0.214086 | 17 | |
44 | dense | 2880 | 512 | 5.625000 | 6.440250 | 0.097358 | 7.972986 | 104 | under-trained |
45 | dense | 4096 | 2880 | 1.422222 | 3.187176 | 0.057436 | 4.478697 | 101 | |
46 | dense | 4096 | 2880 | 1.422222 | 2.696654 | 0.022387 | 11.143665 | 272 | |
47 | dense | 2880 | 512 | 5.625000 | 1.949394 | 0.038322 | 3.404260 | 148 | over-trained |
48 | dense | 4096 | 2880 | 1.422222 | 2.797722 | 0.050473 | 4.112122 | 138 | |
49 | dense | 2880 | 32 | 90.000000 | 2.704446 | 0.101116 | -0.728615 | 17 | |
50 | dense | 2880 | 512 | 5.625000 | 2.614933 | 0.069126 | 3.725065 | 228 | |
51 | dense | 2880 | 32 | 90.000000 | 2.421918 | 0.102403 | -0.679866 | 16 | |
52 | dense | 4096 | 2880 | 1.422222 | 2.825070 | 0.042324 | 3.691076 | 142 | |
53 | dense | 2880 | 512 | 5.625000 | 2.842918 | 0.043029 | 3.949813 | 60 | |
54 | dense | 2880 | 512 | 5.625000 | 4.329260 | 0.057918 | 5.606860 | 135 | |
55 | dense | 4096 | 2880 | 1.422222 | 2.641181 | 0.023662 | 10.078703 | 329 | |
56 | dense | 2880 | 32 | 90.000000 | 2.344294 | 0.088664 | -0.529961 | 19 | |
57 | dense | 4096 | 2880 | 1.422222 | 2.375302 | 0.040841 | 3.647404 | 214 | |
58 | dense | 2880 | 512 | 5.625000 | 2.170892 | 0.074471 | 3.306639 | 81 | |
59 | dense | 2880 | 512 | 5.625000 | 6.742621 | 0.124624 | 8.562793 | 105 | under-trained |
60 | dense | 4096 | 2880 | 1.422222 | 3.017370 | 0.034516 | 11.335605 | 242 | |
61 | dense | 2880 | 32 | 90.000000 | 2.306549 | 0.074069 | -0.746320 | 21 | |
62 | dense | 4096 | 2880 | 1.422222 | 2.871953 | 0.034521 | 3.872503 | 114 | |
63 | dense | 2880 | 512 | 5.625000 | 2.952447 | 0.052819 | 1.996765 | 82 | |
64 | dense | 2880 | 512 | 5.625000 | 5.119852 | 0.067706 | 6.954718 | 69 | |
65 | dense | 4096 | 2880 | 1.422222 | 2.913610 | 0.022414 | 10.758286 | 222 | |
66 | dense | 2880 | 512 | 5.625000 | 2.093811 | 0.045419 | 3.488466 | 64 | |
67 | dense | 4096 | 2880 | 1.422222 | 3.111061 | 0.024192 | 12.127476 | 167 | |
68 | dense | 4096 | 2880 | 1.422222 | 2.216006 | 0.051029 | 3.496397 | 318 | |
69 | dense | 2880 | 512 | 5.625000 | 3.518223 | 0.097175 | 4.643239 | 175 | |
70 | dense | 2880 | 32 | 90.000000 | 2.444455 | 0.101660 | -0.997353 | 16 | |
71 | dense | 4096 | 2880 | 1.422222 | 2.889384 | 0.030760 | 10.083913 | 220 | |
72 | dense | 4096 | 2880 | 1.422222 | 2.462739 | 0.042459 | 4.009048 | 289 | |
73 | dense | 2880 | 512 | 5.625000 | 2.956824 | 0.070019 | 4.566917 | 221 | |
74 | dense | 2880 | 32 | 90.000000 | 2.363133 | 0.088262 | -0.971514 | 15 | |
75 | dense | 2880 | 512 | 5.625000 | 2.604186 | 0.077605 | 2.720129 | 151 | |
76 | dense | 4096 | 2880 | 1.422222 | 2.919467 | 0.062023 | 12.211975 | 232 | |
77 | dense | 2880 | 32 | 90.000000 | 2.296696 | 0.095195 | -0.776789 | 20 | |
78 | dense | 2880 | 512 | 5.625000 | 2.843356 | 0.109875 | 3.762709 | 257 | |
79 | dense | 2880 | 512 | 5.625000 | 1.714051 | 0.096750 | 2.684352 | 199 | over-trained |
80 | dense | 4096 | 2880 | 1.422222 | 2.403256 | 0.052120 | 3.671585 | 183 | |
81 | dense | 2880 | 512 | 5.625000 | 4.234785 | 0.083807 | 6.077078 | 189 | |
82 | dense | 2880 | 512 | 5.625000 | 2.448391 | 0.040750 | 2.275176 | 62 | |
83 | dense | 4096 | 2880 | 1.422222 | 2.425887 | 0.026412 | 3.598034 | 202 | |
84 | dense | 4096 | 2880 | 1.422222 | 2.782783 | 0.065363 | 10.885528 | 316 | |
85 | dense | 2880 | 32 | 90.000000 | 2.380749 | 0.064231 | -0.710560 | 19 | |
86 | dense | 4096 | 2880 | 1.422222 | 2.260075 | 0.030113 | 3.675921 | 233 | |
87 | dense | 2880 | 512 | 5.625000 | 1.425581 | 0.090452 | 2.670576 | 222 | over-trained |
88 | dense | 4096 | 2880 | 1.422222 | 3.011403 | 0.054042 | 13.572460 | 159 | |
89 | dense | 2880 | 32 | 90.000000 | 2.476960 | 0.088368 | -1.105750 | 18 | |
90 | dense | 2880 | 512 | 5.625000 | 3.378459 | 0.088178 | 5.081812 | 150 | |
91 | dense | 4096 | 2880 | 1.422222 | 2.454907 | 0.031534 | 4.301166 | 180 | |
92 | dense | 4096 | 2880 | 1.422222 | 2.415017 | 0.080445 | 10.114409 | 528 | |
93 | dense | 2880 | 32 | 90.000000 | 2.621643 | 0.105785 | -1.038655 | 14 | |
94 | dense | 2880 | 512 | 5.625000 | 2.358463 | 0.016709 | 3.050332 | 86 | |
95 | dense | 2880 | 512 | 5.625000 | 2.942547 | 0.046483 | 5.409753 | 241 | |
96 | dense | 4096 | 2880 | 1.422222 | 3.089852 | 0.031771 | 15.726998 | 232 | |
97 | dense | 4096 | 2880 | 1.422222 | 2.610482 | 0.039721 | 4.456407 | 69 | |
98 | dense | 2880 | 512 | 5.625000 | 1.271491 | 0.103044 | 2.958566 | 402 | over-trained |
99 | dense | 2880 | 512 | 5.625000 | 2.618823 | 0.036447 | 5.713715 | 232 | |
100 | dense | 2880 | 32 | 90.000000 | 2.159075 | 0.117173 | -0.930227 | 26 | |
101 | dense | 2880 | 512 | 5.625000 | 2.229452 | 0.053414 | 3.479839 | 49 | |
102 | dense | 4096 | 2880 | 1.422222 | 2.309532 | 0.046246 | 3.671226 | 230 | |
103 | dense | 4096 | 2880 | 1.422222 | 2.992733 | 0.076547 | 14.068891 | 355 | |
104 | dense | 2880 | 512 | 5.625000 | 2.347256 | 0.032641 | 5.934030 | 292 | |
105 | dense | 2880 | 32 | 90.000000 | 2.766890 | 0.075562 | -1.246218 | 18 | |
106 | dense | 2880 | 512 | 5.625000 | 1.451990 | 0.080713 | 3.916987 | 180 | over-trained |
107 | dense | 2880 | 32 | 90.000000 | 2.951240 | 0.121193 | -1.510171 | 17 | |
108 | dense | 4096 | 2880 | 1.422222 | 2.690499 | 0.034653 | 4.876532 | 49 | |
109 | dense | 4096 | 2880 | 1.422222 | 5.046659 | 0.053141 | 28.254842 | 114 | |
110 | dense | 2880 | 512 | 5.625000 | 2.059024 | 0.034128 | 5.393648 | 301 | |
111 | dense | 4096 | 2880 | 1.422222 | 2.120809 | 0.017786 | 4.931997 | 349 | |
112 | dense | 4096 | 2880 | 1.422222 | 4.588788 | 0.045299 | 23.599132 | 118 | |
113 | dense | 2880 | 512 | 5.625000 | 2.172230 | 0.081017 | 5.677838 | 415 | |
114 | dense | 2880 | 512 | 5.625000 | 1.633619 | 0.037184 | 2.400116 | 286 | over-trained |
115 | dense | 2880 | 32 | 90.000000 | 2.979466 | 0.102822 | -1.521407 | 15 | |
116 | dense | 2880 | 512 | 5.625000 | 1.713645 | 0.124810 | 4.970492 | 355 | over-trained |
117 | dense | 2880 | 32 | 90.000000 | 2.410349 | 0.059360 | -0.696603 | 23 | |
118 | dense | 2880 | 512 | 5.625000 | 1.496771 | 0.061257 | 3.675793 | 152 | over-trained |
119 | dense | 4096 | 2880 | 1.422222 | 1.895164 | 0.017063 | 4.039427 | 406 | over-trained |
120 | dense | 4096 | 2880 | 1.422222 | 4.051025 | 0.055586 | 22.812323 | 240 |