sam2-hiera-large


Find this model in the SAM model summary


sam2-hiera-large Model Set Plots



sam2-hiera-large Model Selected Details
id layer_type N M Q alpha D alpha-hat num_spikes warning
1 dense 256 128 2.000000 2.320139 0.091265 1.301505 32
2 conv2d 144 3 48.000000 1.385037 0.132302 -1.006699 142 over-trained
3 conv2d 256 64 4.000000 10.640262 0.169159 -4.377510 18 under-trained
4 conv2d 256 256 1.000000 1.371653 0.070574 0.198081 177 over-trained
5 dense 256 128 2.000000 2.780644 0.098435 2.048313 9
6 dense 256 128 2.000000 5.025629 0.093285 1.955589 16
7 dense 256 128 2.000000 2.096463 0.106828 1.139199 30
8 dense 256 256 1.000000 1.640839 0.052614 1.200038 113 over-trained
9 conv2d 256 64 4.000000 3.138537 0.067672 -0.551307 62
10 dense 256 256 1.000000 1.503973 0.073838 1.130069 131 over-trained
11 conv2d 1152 256 4.500000 2.183245 0.080332 -1.084445 72
12 dense 256 128 2.000000 1.486246 0.118996 0.723943 83 over-trained
13 dense 256 128 2.000000 2.204569 0.123970 1.585437 23
14 dense 256 128 2.000000 1.366880 0.152008 0.419783 111 over-trained
15 dense 256 128 2.000000 1.250292 0.150791 1.190537 120 over-trained
16 dense 256 64 4.000000 1.500313 0.122468 0.102340 64 over-trained
17 dense 2048 256 8.000000 2.661830 0.044069 3.779415 39
18 dense 256 256 1.000000 1.609578 0.051662 1.664563 131 over-trained
19 dense 256 128 2.000000 1.978667 0.060224 2.015579 29 over-trained
20 dense 256 256 1.000000 1.575430 0.062121 0.442882 128 over-trained
21 dense 256 256 1.000000 1.646842 0.066582 0.934347 114 over-trained
22 dense 256 256 1.000000 1.622017 0.060910 0.549908 128 over-trained
23 dense 256 32 8.000000 1.342989 0.219873 0.524932 30 over-trained
24 dense 256 256 1.000000 1.521416 0.050085 2.503097 85 over-trained
25 dense 256 256 1.000000 1.365788 0.114501 1.832708 151 over-trained
26 dense 256 256 1.000000 1.455709 0.121470 1.260305 140 over-trained
27 conv2d 256 32 8.000000 1.576208 0.113415 -0.617945 23 over-trained
28 dense 256 256 1.000000 1.437489 0.084373 0.558812 147 over-trained
29 dense 1024 256 4.000000 1.470914 0.045150 2.251804 65 over-trained
30 dense 1024 256 4.000000 1.543615 0.037042 2.898562 96 over-trained
31 conv2d 256 1 256.000000 2.613407 0.046529 -0.795518 40
32 dense 2048 256 8.000000 2.020598 0.108250 2.186503 116
33 dense 256 128 2.000000 3.820956 0.158685 0.925401 22
34 dense 256 256 1.000000 1.501876 0.062178 0.895636 156 over-trained
35 dense 256 128 2.000000 1.488141 0.130097 0.827061 86 over-trained
36 dense 576 144 4.000000 3.032189 0.093381 1.564331 61
37 dense 576 144 4.000000 3.692615 0.129154 3.035651 38
38 dense 432 144 3.000000 1.551204 0.068222 2.724630 70 over-trained
39 dense 144 144 1.000000 2.565703 0.064080 1.600912 12
40 dense 256 64 4.000000 1.790267 0.077268 0.801165 42 over-trained
41 dense 256 128 2.000000 2.134148 0.100319 1.941239 23
42 dense 256 256 1.000000 1.648819 0.095911 2.187184 29 over-trained
43 dense 256 256 1.000000 1.418981 0.108783 1.274499 115 over-trained
44 dense 2048 256 8.000000 1.406802 0.059714 2.405357 247 over-trained
45 dense 2048 256 8.000000 1.593228 0.113942 2.472834 186 over-trained
46 dense 256 256 1.000000 1.389302 0.070932 1.049793 95 over-trained
47 dense 256 256 1.000000 1.550208 0.083361 2.403076 35 over-trained
48 dense 256 256 1.000000 1.589540 0.057748 0.683898 134 over-trained
49 dense 256 256 1.000000 1.962018 0.058719 2.594943 46 over-trained
50 dense 432 144 3.000000 2.849740 0.042123 2.436833 57
51 conv2d 256 64 4.000000 2.081196 0.163752 -1.003383 39
52 dense 144 144 1.000000 2.974129 0.052246 0.786238 45
53 dense 256 64 4.000000 2.561220 0.106518 -0.343839 28
54 dense 256 256 1.000000 1.557432 0.063045 0.653016 130 over-trained
55 dense 2048 256 8.000000 2.946209 0.059832 4.385601 28
56 dense 1024 256 4.000000 1.408362 0.070365 2.289960 85 over-trained
57 dense 1024 256 4.000000 1.484623 0.025275 2.553493 224 over-trained
58 dense 576 144 4.000000 3.110664 0.127008 2.259899 55
59 conv2d 576 256 2.250000 4.024066 0.121152 -2.173301 76
60 dense 256 256 1.000000 1.578981 0.051310 1.464145 122 over-trained
61 dense 256 256 1.000000 1.552631 0.063146 0.630553 131 over-trained
62 dense 256 256 1.000000 1.618444 0.052388 1.436114 102 over-trained
63 dense 2048 256 8.000000 1.592638 0.107450 2.095369 235 over-trained
64 conv2d 256 1 256.000000 1.866911 0.067671 0.236997 19 over-trained
65 dense 576 144 4.000000 2.634747 0.154320 1.844444 76
66 dense 256 256 1.000000 1.464353 0.105721 1.430940 106 over-trained
67 dense 256 128 2.000000 2.477219 0.089181 0.960410 35
68 dense 256 128 2.000000 2.409563 0.075011 1.977146 33
69 dense 256 128 2.000000 2.079740 0.079985 0.999016 35
70 dense 256 256 1.000000 1.758850 0.023030 1.930624 74 over-trained
71 dense 256 128 2.000000 2.588569 0.097697 1.624853 24
72 dense 256 256 1.000000 1.338132 0.096034 1.141554 135 over-trained
73 dense 256 128 2.000000 4.090729 0.090507 1.002234 25
74 dense 256 128 2.000000 1.763089 0.114646 1.317853 41 over-trained
75 dense 256 128 2.000000 3.331969 0.101596 1.283581 24
76 dense 256 128 2.000000 1.760778 0.088990 1.572101 40 over-trained
77 dense 2048 256 8.000000 2.702467 0.098168 3.701571 46
78 dense 256 256 1.000000 1.481044 0.055860 2.143885 91 over-trained
79 dense 2048 256 8.000000 1.393811 0.112585 2.154145 246 over-trained
80 dense 256 256 1.000000 1.434122 0.065014 1.206970 164 over-trained
81 dense 256 256 1.000000 1.460402 0.074425 0.730949 164 over-trained
82 dense 256 32 8.000000 2.558113 0.175782 1.494333 13
83 dense 256 256 1.000000 1.416019 0.065881 0.976633 97 over-trained
84 dense 256 256 1.000000 1.439070 0.082962 1.219900 101 over-trained
85 dense 256 256 1.000000 1.505083 0.085469 1.064971 82 over-trained
86 dense 256 64 4.000000 1.456298 0.185194 0.701003 64 over-trained
87 dense 256 256 1.000000 1.536950 0.068936 1.391613 134 over-trained
88 dense 256 64 4.000000 4.962090 0.173782 1.869636 25
89 dense 256 256 1.000000 1.569829 0.039087 0.764742 122 over-trained
90 dense 256 256 1.000000 1.406051 0.070967 1.004731 171 over-trained
91 dense 256 64 4.000000 1.612972 0.090074 -0.167206 49 over-trained
92 dense 2048 256 8.000000 2.942692 0.071372 4.634577 24
93 dense 2048 256 8.000000 1.712359 0.087878 2.320624 158 over-trained
94 dense 256 256 1.000000 1.544888 0.066780 0.591273 139 over-trained
95 dense 256 256 1.000000 1.478773 0.073024 0.563163 132 over-trained
96 dense 256 256 1.000000 1.553588 0.059269 0.584760 138 over-trained
97 conv2d 288 256 1.125000 1.421640 0.085779 -0.419672 162 over-trained
98 dense 256 32 8.000000 1.539776 0.192671 0.852326 26 over-trained
99 dense 288 288 1.000000 3.004997 0.090726 0.966807 46
100 dense 864 144 6.000000 2.577679 0.049808 3.787627 42
101 dense 256 256 1.000000 1.527379 0.066608 1.075662 134 over-trained
102 dense 1152 288 4.000000 4.007202 0.098370 2.865823 76
103 dense 288 144 2.000000 3.134818 0.055588 1.205804 35
104 dense 256 256 1.000000 1.536134 0.055939 1.906298 94 over-trained
105 dense 256 256 1.000000 1.448344 0.114304 1.243512 119 over-trained
106 dense 1152 288 4.000000 4.643433 0.036830 4.947382 45
107 dense 256 256 1.000000 2.217150 0.086896 2.037779 26
108 conv2d 16 4 4.000000 4.264672 0.212293 -7.423374 12
109 dense 256 64 4.000000 1.472742 0.135427 0.597641 63 over-trained
110 conv2d 256 144 1.777778 1.665802 0.079024 -0.896812 68 over-trained
111 conv2d 64 32 2.000000 2.498642 0.080614 0.294522 29
112 dense 256 32 8.000000 1.452926 0.195164 0.800486 31 over-trained
113 dense 2048 256 8.000000 1.921648 0.070206 2.879727 88 over-trained
114 dense 256 256 1.000000 1.517729 0.114771 1.414770 94 over-trained
115 dense 288 288 1.000000 4.228802 0.121119 1.669759 40
116 dense 864 288 3.000000 2.499200 0.049159 3.807390 38
117 dense 1152 288 4.000000 4.343072 0.029733 5.196244 38
118 dense 256 256 1.000000 1.468368 0.058490 1.836776 102 over-trained
119 dense 256 256 1.000000 1.548027 0.043028 1.128697 138 over-trained
120 dense 256 256 1.000000 1.488807 0.053021 1.103514 143 over-trained
121 dense 256 64 4.000000 1.501844 0.105720 0.353127 56 over-trained
122 dense 2048 256 8.000000 2.159636 0.100173 3.544460 79
123 conv2d 16 4 4.000000 3.572715 0.186916 -4.489451 21
124 dense 256 256 1.000000 1.556609 0.050186 0.887940 133 over-trained
125 dense 256 256 1.000000 2.159940 0.085812 1.934971 33
126 dense 256 256 1.000000 1.541511 0.052758 0.861169 128 over-trained
127 dense 1152 288 4.000000 3.097207 0.107277 2.376850 88
128 dense 1152 288 4.000000 3.746266 0.035207 4.472899 51
129 dense 1152 288 4.000000 3.901991 0.061187 3.856600 54
130 dense 288 288 1.000000 3.577568 0.112233 1.371270 34
131 dense 864 288 3.000000 3.746700 0.082299 4.041288 36
132 dense 1152 288 4.000000 4.329956 0.099309 3.680965 45
133 dense 1152 288 4.000000 4.211579 0.059029 4.700431 43
134 dense 864 288 3.000000 2.763937 0.051572 3.254165 59
135 dense 288 288 1.000000 4.947196 0.150567 1.364392 37
136 dense 288 288 1.000000 4.286029 0.098659 1.020100 37
137 dense 1152 288 4.000000 4.011376 0.101195 3.386789 55
138 conv2d 64 16 4.000000 1.913661 0.104421 -1.329658 77 over-trained
139 dense 864 288 3.000000 3.946840 0.140997 3.740848 54
140 dense 1152 288 4.000000 4.859495 0.102490 5.105953 53
141 conv2d 256 16 16.000000 1.749136 0.167368 0.962413 10 over-trained
142 dense 1152 288 4.000000 5.658576 0.051206 6.088575 17
143 dense 288 288 1.000000 3.515988 0.102770 1.116406 39
144 dense 864 288 3.000000 4.383636 0.094249 4.077197 29
145 dense 1152 288 4.000000 3.558526 0.084429 3.505955 69
146 dense 576 288 2.000000 3.467881 0.054425 3.031134 39
147 dense 2304 576 4.000000 3.449221 0.033539 6.599811 50
148 dense 2304 576 4.000000 2.868831 0.040523 5.715312 80
149 dense 1728 288 6.000000 3.343256 0.062355 4.704315 42
150 dense 576 576 1.000000 6.393012 0.104996 4.356080 49 under-trained
151 conv2d 256 64 4.000000 1.459785 0.073110 0.245204 477 over-trained
152 dense 2304 576 4.000000 3.281913 0.037994 6.858703 68
153 dense 1728 576 3.000000 2.169142 0.071287 3.591809 86
154 dense 576 576 1.000000 1.741404 0.092227 1.705039 174 over-trained
155 dense 2304 576 4.000000 2.899104 0.076595 4.585548 140
156 dense 576 576 1.000000 1.787789 0.134619 1.406555 222 over-trained
157 dense 1728 576 3.000000 2.402589 0.077274 3.814888 73
158 dense 2304 576 4.000000 2.810620 0.085739 5.663523 143
159 dense 2304 576 4.000000 3.286461 0.045220 5.062141 71
160 dense 576 576 1.000000 4.558985 0.113116 2.985570 50
161 dense 1728 576 3.000000 2.695827 0.061532 3.819339 91
162 dense 2304 576 4.000000 3.755237 0.028326 7.508337 34
163 dense 2304 576 4.000000 2.758635 0.074884 4.225445 154
164 dense 2304 576 4.000000 3.545463 0.032223 6.914350 50
165 dense 2304 576 4.000000 2.711135 0.095285 3.737344 188
166 conv2d 256 256 1.000000 1.518324 0.053230 1.165092 148 over-trained
167 dense 576 576 1.000000 5.095909 0.089327 3.266563 37
168 dense 1728 576 3.000000 3.009876 0.068579 4.394032 62
169 dense 2304 576 4.000000 3.607134 0.027369 6.930204 34
170 dense 576 576 1.000000 2.652339 0.109707 1.818301 124
171 dense 2304 576 4.000000 2.986351 0.062236 4.268680 94
172 dense 1728 576 3.000000 3.470030 0.085824 4.505343 66
173 dense 2304 576 4.000000 3.188421 0.070377 4.499503 81
174 dense 2304 576 4.000000 3.619368 0.034376 6.706594 38
175 dense 1728 576 3.000000 2.931290 0.070816 4.077755 85
176 dense 576 576 1.000000 2.795522 0.137018 1.680546 142
177 dense 2304 576 4.000000 3.679521 0.037945 6.639696 36
178 dense 2304 576 4.000000 3.307141 0.061225 4.349523 71
179 dense 1728 576 3.000000 2.493727 0.091955 3.282176 128
180 dense 576 576 1.000000 4.134127 0.106484 2.879255 60
181 dense 2304 576 4.000000 2.875595 0.074777 3.776636 142
182 dense 2304 576 4.000000 3.458108 0.032101 6.017778 90
183 dense 1728 576 3.000000 2.651558 0.106034 3.205735 145
184 dense 576 576 1.000000 3.690451 0.108022 2.366108 73
185 dense 2304 576 4.000000 3.593774 0.046026 6.329157 56
186 dense 1728 576 3.000000 2.627198 0.068195 3.423901 117
187 dense 576 576 1.000000 3.361438 0.111610 2.311816 87
188 dense 2304 576 4.000000 2.667123 0.076175 3.630710 189
189 dense 2304 576 4.000000 3.362773 0.050849 5.811877 96
190 dense 2304 576 4.000000 2.968681 0.072910 3.906842 122
191 dense 576 576 1.000000 3.964754 0.078171 2.453588 50
192 dense 1728 576 3.000000 3.173724 0.069298 4.347937 61
193 dense 2304 576 4.000000 4.244149 0.044239 7.372789 27
194 dense 1728 576 3.000000 2.438243 0.095957 3.184037 176
195 dense 2304 576 4.000000 2.822550 0.087840 3.581095 190
196 dense 576 576 1.000000 3.527331 0.100075 2.403921 73
197 dense 2304 576 4.000000 3.155991 0.083661 3.923124 131
198 dense 2304 576 4.000000 4.014854 0.044128 6.802901 45
199 dense 1728 576 3.000000 2.840888 0.032308 4.426347 61
200 dense 576 576 1.000000 4.908772 0.108756 2.699093 46
201 dense 2304 576 4.000000 4.041055 0.027342 6.729554 39
202 dense 2304 576 4.000000 3.718642 0.041855 4.618161 52
203 dense 576 576 1.000000 3.195402 0.101317 2.026296 100
204 dense 1728 576 3.000000 3.114079 0.066161 3.956274 75
205 dense 2304 576 4.000000 3.816159 0.029350 6.316612 78
206 dense 2304 576 4.000000 3.766752 0.052271 4.882794 52
207 dense 576 576 1.000000 4.287482 0.058010 2.709854 43
208 dense 1728 576 3.000000 2.451682 0.069111 3.068131 155
209 dense 576 576 1.000000 4.313967 0.053349 2.893950 37
210 dense 1728 576 3.000000 2.655995 0.071498 3.173424 126
211 dense 2304 576 4.000000 3.792558 0.029904 6.255254 68
212 dense 2304 576 4.000000 3.048643 0.091441 3.980632 163
213 dense 2304 576 4.000000 4.646915 0.053653 6.397076 24
214 dense 2304 576 4.000000 3.622342 0.032623 6.267162 72
215 dense 1728 576 3.000000 2.368211 0.093694 2.550217 195
216 dense 576 576 1.000000 4.027233 0.091161 2.199832 59
217 dense 1728 576 3.000000 2.280403 0.105667 2.603901 225
218 dense 2304 576 4.000000 3.491497 0.025975 6.282020 78
219 dense 2304 576 4.000000 3.227051 0.093152 4.469856 111
220 dense 576 576 1.000000 4.148815 0.101176 2.550595 69
221 dense 576 576 1.000000 4.815198 0.070153 3.038960 28
222 dense 1728 576 3.000000 2.673203 0.048024 3.499389 107
223 dense 2304 576 4.000000 3.438444 0.031175 6.146393 78
224 dense 2304 576 4.000000 3.795582 0.060553 5.091951 61
225 dense 2304 576 4.000000 3.001697 0.088897 3.667163 148
226 dense 1728 576 3.000000 2.927673 0.073394 3.081128 116
227 dense 576 576 1.000000 4.789970 0.096122 2.778592 56
228 dense 2304 576 4.000000 3.733481 0.029168 6.274070 43
229 dense 2304 576 4.000000 2.966501 0.098885 3.398699 183
230 dense 2304 576 4.000000 3.892143 0.041847 6.401990 37
231 dense 1728 576 3.000000 2.770763 0.054523 3.188307 106
232 dense 576 576 1.000000 4.487137 0.095904 2.714966 54
233 dense 2304 576 4.000000 3.602177 0.040979 5.936140 67
234 dense 1728 576 3.000000 3.011350 0.079305 3.245978 72
235 dense 576 576 1.000000 5.677555 0.060125 3.287586 14
236 dense 2304 576 4.000000 2.955670 0.091408 3.383614 167
237 dense 576 576 1.000000 3.538476 0.109531 2.219710 88
238 dense 2304 576 4.000000 3.952787 0.034704 6.426291 39
239 dense 2304 576 4.000000 3.726400 0.093978 4.024687 81
240 dense 1728 576 3.000000 3.236028 0.062930 3.302817 72
241 dense 576 576 1.000000 5.232878 0.063933 3.305268 15
242 dense 1728 576 3.000000 2.563828 0.074601 2.515241 157
243 dense 2304 576 4.000000 3.897755 0.039731 6.366602 35
244 dense 2304 576 4.000000 3.708959 0.092101 3.876394 82
245 dense 576 576 1.000000 4.168896 0.054451 2.939921 34
246 dense 1728 576 3.000000 2.654980 0.081140 2.465542 141
247 dense 2304 576 4.000000 3.741833 0.036509 6.059388 54
248 dense 2304 576 4.000000 4.262764 0.071833 4.038930 46
249 dense 576 576 1.000000 3.575813 0.072207 2.084038 40
250 dense 1728 576 3.000000 2.109155 0.063467 2.365666 207
251 dense 2304 576 4.000000 3.855877 0.031112 6.104314 54
252 dense 2304 576 4.000000 3.936267 0.065668 3.791107 47
253 dense 2304 576 4.000000 3.428629 0.061057 3.220939 85
254 dense 2304 576 4.000000 3.716507 0.039187 5.961297 58
255 dense 576 576 1.000000 3.850678 0.041647 2.510849 27
256 dense 1728 576 3.000000 2.905527 0.061847 2.594651 88
257 dense 2304 576 4.000000 3.662129 0.054427 3.368975 69
258 dense 576 576 1.000000 3.290120 0.107100 2.085080 80
259 dense 1728 576 3.000000 2.530693 0.053348 2.747061 114
260 dense 2304 576 4.000000 3.809592 0.043808 6.136830 42
261 dense 576 576 1.000000 3.580363 0.074555 2.192365 40
262 dense 1728 576 3.000000 2.498411 0.049252 2.528826 100
263 dense 2304 576 4.000000 3.701384 0.030193 6.031082 55
264 dense 2304 576 4.000000 3.640267 0.052289 3.293827 72
265 dense 1728 576 3.000000 2.608356 0.055923 2.575188 88
266 dense 2304 576 4.000000 3.717457 0.035665 6.152085 44
267 dense 2304 576 4.000000 3.822183 0.067884 3.184748 66
268 dense 576 576 1.000000 3.736145 0.096583 2.256944 55
269 dense 576 576 1.000000 3.111251 0.061246 2.196723 47
270 dense 1728 576 3.000000 2.876460 0.065162 2.534094 79
271 dense 2304 576 4.000000 3.432335 0.034070 5.661702 75
272 dense 2304 576 4.000000 3.791568 0.083935 3.419322 83
273 dense 2304 576 4.000000 3.573013 0.031592 5.865621 53
274 dense 2304 576 4.000000 4.028623 0.054696 3.887676 46
275 dense 1728 576 3.000000 2.019010 0.079866 1.800980 260
276 dense 576 576 1.000000 2.797795 0.074106 2.116303 65
277 dense 576 576 1.000000 2.613641 0.128077 1.748896 133
278 dense 1728 576 3.000000 2.836846 0.067865 2.510454 98
279 dense 2304 576 4.000000 3.439303 0.047611 5.334238 56
280 dense 2304 576 4.000000 4.336779 0.072568 4.136934 39
281 dense 2304 576 4.000000 1.931791 0.119111 1.890426 332 over-trained
282 dense 2304 576 4.000000 3.282502 0.052144 4.907383 65
283 dense 1728 576 3.000000 2.536548 0.042573 3.291498 56
284 dense 576 576 1.000000 3.846105 0.047709 1.707738 46
285 dense 576 576 1.000000 1.977474 0.139057 1.340526 200 over-trained
286 dense 2304 576 4.000000 3.592291 0.056844 5.278808 42
287 dense 2304 576 4.000000 1.687641 0.113353 1.832999 423 over-trained
288 dense 1728 576 3.000000 2.770469 0.041651 3.134003 61
289 dense 576 576 1.000000 2.745264 0.053797 2.559445 49
290 dense 1728 576 3.000000 2.472044 0.061914 2.604089 93
291 dense 2304 576 4.000000 3.635968 0.056302 5.188261 38
292 dense 2304 576 4.000000 1.537370 0.096502 1.773681 487 over-trained
293 dense 3456 576 6.000000 1.971993 0.082902 2.415573 249 over-trained
294 dense 4608 1152 4.000000 1.928665 0.021176 4.814150 391 over-trained
295 dense 4608 1152 4.000000 1.935600 0.019922 3.566670 417 over-trained
296 dense 1152 576 2.000000 2.213861 0.031995 0.875930 149
297 dense 1152 1152 1.000000 2.058291 0.093880 1.624178 158
298 dense 1152 1152 1.000000 1.767740 0.068200 2.123719 285 over-trained
299 dense 3456 1152 3.000000 1.726567 0.033909 2.627267 273 over-trained
300 dense 4608 1152 4.000000 1.860940 0.025419 4.414021 398 over-trained
301 dense 4608 1152 4.000000 1.849796 0.019552 3.528350 415 over-trained
302 dense 4608 1152 4.000000 1.774755 0.019885 3.368628 383 over-trained
303 dense 1152 1152 1.000000 1.666344 0.089624 2.090128 410 over-trained
304 dense 3456 1152 3.000000 1.785050 0.043923 2.565984 180 over-trained
305 dense 4608 1152 4.000000 1.808227 0.032760 4.272339 321 over-trained
306 dense 1152 1152 1.000000 1.659749 0.096642 2.094286 382 over-trained
307 dense 3456 1152 3.000000 1.816548 0.047470 2.644115 139 over-trained
308 dense 4608 1152 4.000000 1.777129 0.036143 4.590301 277 over-trained
309 dense 4608 1152 4.000000 1.696125 0.025183 2.993044 375 over-trained